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Abstract

In this paper the implementation of an adaptive mesh refinement scheme into an
existing three-dimensional Eulerian hydrocode is described.  The adaptive strategy is
block-based, which was required in order to leave the existing data structure intact.  The
focus of this work is on the development of refinement and unrefinement procedures that
are conservative and preserve the locations of material interfaces, as well as error
indicators suitable for use in an Eulerian hydrocode.

Introduction

Adaptive mesh refinement refers to a scheme for finite difference and finite
element codes wherein the size and distribution of the computational mesh is changed
dynamically so that the solution complies with some specific constraint.  There are many
different types of constraints of interest, depending on the goals of the computation, but a
common constraint is that the error be held constant over the entire computational mesh.
There are many advantages to adaptive refinement schemes; most importantly is that
problems are solved in the most computational time and memory-efficient manner.

The benefits of adaptive mesh refinement have already been demonstrated in
many application areas (for example, linear elasticity, gas dynamics, and acoustics), but
adaptive refinement for shock wave physics codes is still a new area of research.
Eulerian codes in particular may benefit significantly from adaptive mesh refinement
since typically it is necessary to include a large number of elements in a simulation, even
in regions where there may not be any material initially.

In this paper the implementation of an adaptive mesh refinement scheme into an
existing three-dimensional Eulerian hydrocode is described.  The adaptive strategy is
block-based, which was required in order to leave the existing data structure intact.  The
focus of this work is on error indicators suitable for use in an Eulerian hydrocode, as well
as refinement and unrefinement procedures.



Overview of Adaptive Strategy

When implementing adaptive refinement into an existing code, it is very
important to consider the organization and data structure of the target application code.
In the present case, the data is organized in (I,J,K) logical blocks that correspond to the
mesh used in the problem, as is shown in Fig. 1.  Within a block, the mesh contour lines
must remain parallel to the coordinate axes and constrained nodes are not permitted.
However, different values of I, J, and/or K are permitted in adjacent blocks.  Thus a
reasonable approach for implementation of adaptivity, which preserved the existing data
structure in the code, was to limit refinement to the block level.  Furthermore, in order to
simplify the refinement process as well as communication between blocks, the
refinement/unrefinement was limited to isotropic 2:1 ratios along adjacent blocks.  This is
illustrated in Fig. 2, where a set of communicating blocks is shown.  Ghost cells are
incorporated along the edges of the block, and the contents of these cells comes from a
cell combine or split as is needed from the adjacent block.  In this way, each block sees
exactly the information it expects to see.

Figure 1.  Organization of data in target application code Figure 2.  Block-adaptive strategy applied to target
application code.

A significant part of this effort is to establish the two-way communication
between blocks, as well as to make the scheme work in parallel, which is the subject of
an another paper [1].  The focus of this work is on the development of refinement and
unrefinement schemes, as well as error indicators, suitable for implementation into a
three-dimensional Eulerian shock physics code.

Refinement and Unrefinement

Efficient and accurate schemes for refinement ant unrefinement of the cell
variables are a crucial element in any adaptive scheme. The refinement and unrefinement
strategies used here take advantage of the 1:2 and 2:1 ratios between parent and child
cells, allowing these processes to be carried out rapidly and in a conservative manner.



Unrefinement Procedure

The collapse of a set of eight child cells into a single parent cell is a simple
process.  A method for this was implemented by Crawford [1] and was not initially
modified any further. It conserves mass and energy; momentum is also conserved if the
velocity profiles are linear across the parent cell.  Further details of the procedure may be
found in [2].

Refinement Procedure

The refinement of a parent cell into eight child cells, on the other hand, is
complicated by the fact that there may be material interfaces in the parent cell.  The
interfaces must be reconstructed to properly map the cell variables to the children.  There
are already algorithms in place in the target application code that perform rezoning that
could have been used for this; however, these algorithms rely in one-dimensional
advection and were thought to be too dispersive given the large number of times the
refinement routines are used during a typical calculation.  Instead, we can take advantage
of the exact geometric overlaps that exist when the refinement is limited to 2 to 1 ratios,
and reconstruct the material interfaces in the child cells exactly.  This eliminates
dispersion errors.

Review of Youngs’ Method for Interface Reconstruction

A key element in the refinement process is the proper mapping of material
interfaces when elements are refined.  In order to understand this process, it is useful to
review Youngs’ algorithm for interface reconstruction [3].  The method is a systematic
approach for a unique determination of a planar interface separating two materials in a
cell, given the volume fractions of the materials in the cell.  Conceptually, the method is
simple to understand.  Where it provides the greatest benefit is by minimizing the number
of possible intersection conditions that must be checked when a plane of arbitrary
orientation passes through a cell (there are only five when this method is applied).

The basic strategy in the Youngs’ algorithm is to determine the outward unit normal
vector n separating the material of interest from the other materials, and the distance d
from the interface plane to a reference corner, measured along a direction parallel to n.  If
there are only two materials in the cell and the interface plane is assumed to be planar,
these two quantities uniquely define the location of the interface plane.   There are five
possible intersection conditions.  These are given in Figure 3, and include the triangle
section, quadrilateral section A, pentagonal section, hexagonal section, and the
quadrilateral section B.  From this comes the interface geometry as well as a value for d.
A summary of the relationships needed to determine d for each of the intersection
conditions can be found in [3].



Figure 3.  Possible intersection conditions for a plane intersecting a unit cube: (a) triangle section, (b) quadrilateral section A,
(c) pentagonal section, (d) hexagonal section, and (e) quadrilateral section B.
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Extension of Youngs’ Method for Cell Refinement

When extended, Youngs’ method can also be applied to cell refinement.  The first
step is to apply the method as originally outlined to determine d and n for a particular
parent cell. Once d and n are known, refinement into eight equal volume child cells can
be accomplished in a manner that preserves the interface reconstruction in the children.
The basic procedure is to compute d and n for each of the children, locate the position of
the interface plane then determine the value for the volume fraction corresponding to this
plane location.  Consider the refinement of a parent cell into eight children, in the 1-2-3
coordinate system, as is depicted in Fig. 4.

Figure 4.  Schematic of refinement of a parent cell into eight equal volume child cells.

The unit normal vector to the interface plane is the same for the children as it is for the
parent cell.  The corner distances di for each of the children is easily derived and is given
by

Note that the values of di for the children are based on values for a unit cell.  Now, given
the value for d and n in each of the child cells, the interface can be reconstructed and the
required volume fraction can be computed.  The number of possible intersections that
must be considered is again reduced to the five possibilities given in Figure 3.  A
summary of the required relationships can be found elsewhere [2].
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Refinement of Cell Variables

Once the volume fractions have been properly mapped from the parent cell to the
children, the cell variables can then be mapped.  The mapping employed assures
conservation of mass, momentum and internal energy between the parent and its children.
Further details of the procedure may be found in [2].

Implementation

FORTRAN routines were written to perform the refinement process described in
the previous sections.  Using a simple driver program, the routines were all tested.  An
example of the output from the testing is given in Fig. 5.  Shown in Fig. 5a are volume
fractions for three materials in an 8x8 two-dimensional block.  In Fig. 5b, the volume
fractions for the refined cells corresponding to the lower left-hand quadrant of this block
are shown.  Note that the volume fraction for Material 1 in refined cell (3,4) appears to be
quite large.  This distortion is a correct result and is caused by the fact that the interface
edges do not match up along cells adjacent to parent cell (2,2) (which is used to
determine the volume fractions in child cell (3,4)).  Recall that the interface

Material 1

8  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3  1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8

Material 2

8  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3  0.0000 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2  0.2500 0.2500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
         1                2              3                4             5               6                7              8

Material 3

8  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3  0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8

Figure 5a.  Example of volume fractions for an 8x8 parent cell.



Material 1

8  1.0000 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
7  1.0000 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
6  1.0000 1.0000 0.6154 0.0000 0.0000 0.0000 0.0000 0.0000
5  1.0000 1.0000 0.3846 0.0000 0.0000 0.0000 0.0000 0.0000
4  0.6154 0.3846 0.8284 0.0858 0.0000 0.0000 0.0000 0.0000
3  0.0000 0.0000 0.0858 0.0000 0.0000 0.0000 0.0000 0.0000
2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8

Material 2

8  0.0000 0.0000 0.0000 0.5000 1.0000 1.0000 1.0000 1.0000
7  0.0000 0.0000 0.0000 0.5000 1.0000 1.0000 1.0000 1.0000
6  0.0000 0.0000 0.0000 0.4667 1.0000 1.0000 1.0000 1.0000
5  0.0000 0.0000 0.0000 0.5333 1.0000 1.0000 1.0000 1.0000
4  0.0000 0.0000 0.0000 0.0858 1.0000 1.0000 1.0000 1.0000
3  0.4667 0.5333 0.0858 0.8284 1.0000 1.0000 1.0000 1.0000
2  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
          1                2              3                4             5               6                7              8

Material 3

8  0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
7  0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000
6  0.0000 0.0000 0.3846 0.5333 0.0000 0.0000 0.0000 0.0000
5  0.0000 0.0000 0.6154 0.4667 0.0000 0.0000 0.0000 0.0000
4  0.3846 0.6154 0.1716 0.8284 0.0000 0.0000 0.0000 0.0000
3  0.5333 0.4667 0.8284 0.1716 0.0000 0.0000 0.0000 0.0000
2  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
         1                2              3                4             5               6                7              8

Figure 5b.  Computed volume fractions for the 8x8 child cells corresponding to the lower left-hand quadrant.

reconstruction method described requires that the interfaces be planar and does not
require that the planes match up along the edges of adjacent cells.

Error Estimation

A key component of any adaptive scheme is the ability to estimate the error in the
calculation accurately and efficiently.  Decisions are made regarding refinement and/or
unrefinement based on values computed for the error estimates.  There are numerous
techniques that have been used successfully as indicators for the error in numerical
solutions of differential equations.  A posteriori error estimation methods for differential
equations have been under continual development for about the last two decades.  A
summary of the current state-of-the-art in posteriori error estimation can be found in [4].
However, very few methods have been examined and tested for highly nonlinear
equations, which exist in shock physics and large deformation applications.



The complexity of the governing equations, when coupled with the speed of time
integration in the explicit calculation used for these applications, prohibits detailed
estimates of the error in the solution.  However, residuals associated with each of the
governing equations can be estimated very quickly, and do not represent a significant
computational burden over and above the time integration itself.  Then, hopefully the
residuals will provide meaningful information for use in driving an adaptive process.
This is the approach considered here.  Furthermore, although the numerical integration
procedure used in the target application code is based on finite volume, the formulation
developed here for the residual estimates is based on finite elements, using the solution
from code as a finite element approximation to the exact solution.  In this way we can
build on the residual estimation procedures that have already been developed for the
finite element method.

Element-by element residuals from each of the governing conservation equations
solved in the application code can be formulated as

and
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where ρ is the density, v the velocity, p the pressure, τ the deviatoric stress tensor, e the
internal energy, and the x subscript denotes the approximate solution.  The function w and
its vector counterpart w are arbitrary weight functions, Ω the control volume and Γ its
surface, and Rρ, Rv, and Re are the residuals associated with mass, momentum and energy
conservation, respectively. Here, the sums over k denote sums over all the elements, and
the terms in [] for the surface integrals denote the jump in the specified quantity across
the element edge.  The weight function in each of these integrands is arbitrary, but for
error estimation purposes it is usually sufficient to estimate the magnitudes of the
integrals with respect to some norm.  In the present case, we use the L2 norm, which
allows us to write the residuals as

and

where rix and rbx denote the integrands from the volume and surface integrals from Eqs.
(2) – (4), and are referred to as interior and boundary residuals, respectively; Ωk is a
subdomain of Ωκ consisting of elements sharing a common edge with Ωk; hk is the
diameter of element k; Ci is a constant independent of the element size, and | ⋅ | denotes
the H1 semi-norm.  Each of the terms in {} from Eqs. (5) – (7) are readily computed from
the numerical solution to the problem.

One-Dimensional Simulations

In order to test the validity of the residuals for use as error indicators, as well as
accuracy as the error estimates, some one-dimensional calculations of shock propagation
were performed.  Shown in Fig. 6 is a description of the problem.  An aluminum bar
strikes a stationary aluminum bar at 2000 m/s.  This causes shock waves to be propagated
forward into the stationary bar and backward into the moving bar.  Figure 7 shows results
from a one-dimensional lagrangian simulation of the impact encounter.  Shown are
calculated velocity profiles at various times after impact, along with the exact solution.
Agreement between the solutions is good; the numerical solution exhibits some
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Figure 6.  Setup for one-dimensional shock propagation test problem.

ringing near the shock boundaries, which is due to the artificial viscosity necessary for a
valid solution.  Artificial viscosity is not used in the analytical solution.

Figure 7.  Velocity versus position at several times. Figure 8. 1/2 hk
1/2||rbv|| versus position at several times.

Norms of the residuals calculated from the solutions shown in Fig. 7 are shown in
Figs. 8 – 10.  In Fig. 8, the norm of the boundary residual from the momentum equation,
multiplied by 1/2hk

1/2, is shown.  The boundary residual is largest at the shock interface.
Figure 9 shows the interior residual from the momentum equation multiplied by hk.  The
interior residual is also large near the shock boundary, but is smaller in  magnitude than
the boundary residual.  The sum of these two residuals, which is the term in {} in Eq. (6),
is given in Fig. 10.

2000 m/s

Al Al



Figure 9. hk||riv|| versus position at several times. Figure 10.  Residual sum  versus position at several times.

Two-Dimensional Simulations

In the two-dimensional case it is usually not possible to derive an analytical
solution for problems of practical significance.  Nevertheless, it is possible to make
qualitative judgments about the performance error indicators in picking up regions in the
problem where the error in the solution is probably large (for example, across shock
waves or in regions of large deformations).

A two-dimensional lagrangian simulation of a generic Taylor anvil impact was
performed to test the utility of the residuals for use as an indication of the error.  Shown
in Fig. 11a is the problem setup.  The steel cylinder, 20 mm in diameter and 40 mm long,
strikes a rigid boundary at x = 0 with an initial velocity of 1000 m/s.  The simulation was
run assuming axial symmetry.  Interaction with the rigid boundary produces a mushroom-
shaped cylinder at subsequent times after impact, which is illustrated in Figs. 11b – 11d.

Figure 11a.  Problem setup. Figure 11b.  Pressure contours at 3.0 µs.



Figure 11c.  Pressure at 4.9 µs. Figure 11d.  Pressure at 6.7 µs.

Values for the total residual associated with the momentum equation [i.e. the term
in {} in Eq. (6)] is given in Figs. 12a-c.  Clearly, the residuals are large across the shock
wave propagating back towards the back of the cylinder.  The residual also starts to
increase in magnitude near the tip of the mushrooming head, where the largest
deformations are occurring.  This is probably a region of large error, which is also
indicated by the residual.

Figure 12a.  Residual sum at 3.0 µs. Figure 12b.  Residual sum at 4.9 µs.



Figure 12c.  Residual sum at 6.7 µs.

Conclusions

Algorithms necessary for
implementation of adaptive mesh
refinement into a three-dimensional
Eulerian hydrocode have been described
in this work.  An existing technique for
interface reconstruction was extended to
yield the proper volume fractions for
mixed-material cells during refinement.
Preliminary results for error indicators
are promising, but further enhancements
and testing are still needed.
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